Introduction to Sinara

Sinara is an open-source hardware ecosystem originally designed for use in quantum physics experiments running the ARTIQ control software. It is licensed under CERN OHL v1.2.

Control electronics used in many trapped-ion and other quantum physics experiments suffers from a number of problems. In general, an ad-hoc solution is hastily put together in-house without enough consideration about good design, reproducibility, testing and documentation. This makes those systems unreliable, fragile, and difficult to use and maintain. It also duplicates work in different laboratories. In addition, the performance and features of the existing systems (e.g. regarding pulse shaping abilities) is becoming insufficient for some experiments.

To alleviate those problems, Sinara aims to be:

  • high-quality

  • simple to use and “turn-key”

  • reproducible and open

  • flexible and modular

  • well tested

  • well supported by the ARTIQ control software

Sinara is currently developed by a collaboration including M-Labs, Warsaw University of Technology (WUT), US Army Research Laboratory (ARL), the University of Oxford, the University of Maryland and NIST. The majority of the hardware was designed by WUT. The work was funded by ARL, Duke University, the University of Oxford, and the University of Freiburg.

Currently, most of this hardware is at the production stage. Information about the status of the various hardware projects making up Sinara can be found here. Advice about purchasing Sinara hardware can be found here.

Following the ARTIQ model, an experiment consists of a core device (master) – typically either a Metlino or Kasli – controlling multiple slave devices in real time using ARTIQ’s distributed real-time IO (DRTIO) protocol. DRTIO provides both gigabit communication links and time distribution over copper cable or optical fibres. It synchronises all device clocks, ensuring they have deterministic phase relationships, and enables nanosecond timing resolution for input and output events across all devices in the experiment.

Sinara uses two main form factors for hardware requiring real-time control: microTCA (uTCA) and Eurocard Extension Modules (EEM). Non real-time hardware is typically connected to the host PC using Ethernet.

MicroTCA (uTCA) is Sinara’s preferred form factor for high performance hardware with high-speed data converters requiring deterministic phase control, such as the Sayma Smart Arbitrary Waveform Generator (SAWG).

EEMs provide a lower cost, simpler platform than uTCA for hardware that requires real-time control, but not bandwidth or complexity of uTCA hardware.

Extension modules connect to a carrier, such as Kasli or the VHDCI carrier, which provides power and DRTIO. They are designed to be mounted either in stand-alone enclosures, or in a rack with a carrier, and connect to the carrier via ribbon cable. More details about the extension module standard can be found here.

uTCA hardware interfaces with the extension modules either directly, using a VHDCI carrier, or indirectly, using a Kasli DRTIO slave.